Hannover

Deep Submicron Signal Integrity and Testing

by

Hartmut Grabinski, Petra Nordholz, Dirk Niggemeyer, Jan Otterstedt, Dieter Treytnar, Uwe Arz, Tom W. Williams

> Laboratorium für Informationstechnologie Universität Hannover Germany

Outline

1 Introduction

- 2 Modeling of interconnects
- 3 Impact on testing
- 4 Summary

First question: **How does scaling in deep submicron effect the quality of signals**?

Answer:

By signal propagation effects on interconnects

- → What are the (significant) effects?
- → How can we model these effects?

Second question: What is the impact on testing?

Outline

- 1 Introduction
- 2 Modeling of interconnects
- 3 Impact on testing
- 4 Summary

Significant effects:

5

Results from interconnect effects on (digital) circuits

Question: **How can we model these effects?**

Answer: Using Maxwell's Equations

→ Telegraphers Equations:

$$\frac{\partial \underline{\mathbf{v}}(\mathbf{z}, \mathbf{t})}{\partial \mathbf{z}} = - \begin{pmatrix} \mathbf{R} & \mathbf{L} & \frac{\partial}{\partial \mathbf{t}} \end{pmatrix} \underline{\mathbf{i}}(\mathbf{z}, \mathbf{t})$$
$$\frac{\partial \underline{\mathbf{i}}(\mathbf{z}, \mathbf{t})}{\partial \mathbf{z}} = - \begin{pmatrix} \mathbf{G} & \mathbf{C} & \frac{\partial}{\partial \mathbf{t}} \end{pmatrix} \underline{\mathbf{v}}(\mathbf{z}, \mathbf{t})$$

Types of modeling

1. Lumped element model (commonly used):

advantage:simple for use in general purposenetwork analysis programsdisadvantage:strictly speaking: wrong

State of practice: modeling of line systems

2. Distributed model; e.g. WIRE:

Solution:

$$\underline{\mathbf{v}}_{1}^{k}(\mathbf{t}) = (\mathbf{1} - \mathbf{A}_{1}^{k}) \otimes \underline{\mathbf{v}}_{2}^{k}(\mathbf{1}\mathbf{t} - \mathbf{T}^{k}) \quad \mathbf{A}_{2}^{k-1} \otimes \underline{\mathbf{v}}_{1}^{k-1}(\mathbf{1}\mathbf{t} - \mathbf{T}^{k})$$
$$\underline{\mathbf{v}}_{2}^{k}(\mathbf{t}) = (\mathbf{1} - \mathbf{A}_{1}^{k}) \otimes \underline{\mathbf{v}}_{1}^{k}(\mathbf{1}\mathbf{t} - \mathbf{T}^{k}) \quad \mathbf{A}_{2}^{k-1} \otimes \underline{\mathbf{v}}_{2}^{k-1}(\mathbf{1}\mathbf{t} - \mathbf{T}^{k})$$

Examples for medium losses: comparison wire - rlc wire - rc

2 Modeling of Interconnects

2-line system, 0.18 μ , M5, output driven line, R' = 8 kÙ/m

Example for high losses: comparison wire - rc

Outline

- 1 Introduction
- 2 Modeling of interconnects
- **3** Impact on testing
- 4 Summary

Question: **Have interconnects to be taken into account for testing**?

Data (in µm) obtained from SIA-Roadmap					
technology	0.35µ	0.25µ	0.18µ	0.13µ	0.1µ
w1	≥0.4	≥0.3	≥0.22	≥0.15	≥0.11
w2, w3, w4	≥0.6	≥0.45	≥0.33	≥0.22	≥0.16
w5	≥0.8	≥0.6	≥0.44	≥0.3	≥0.22
s1	≥0.5	≥0.35	≥0.25	≥0.18	≥0.13
s2, s3, s4	≥0.6	≥0.45	≥0.33	≥0.22	≥0.16
s5	≥2.0	≥1.5	≥1.1	≥0.75	≥0.55
h1	0.6	0.6	0.55	0.45	0.38
h2, h3, h4	0.9	0.9	0.82	0.66	0.56
h5	1.2	1.2	1.1	0.9	0.77
d1	1.0	1.0	0.9	0.75	0.75
d2, d3, d4, d5	0.9	0.9	0.8	0.7	0.7
epitaxy	3.0	2.0	1.4	1.0	0.8
substrate	400	400	400	400	400
signal rise time	150ps	100ps	75ps	55ps	45ps
V _{DD}	3.3V	2.5V	1.5V	1.35V	1.2V

Capacitances to ground (C'₁₀)

Coupling capacitances (C'₁₂) vs. technology

Example: Interconnect system

Occurence of additional delays and hazards due to coupling effects on interconnects Input signals:

Occurence of additional delays and hazards due to coupling effects on interconnects Output signals:

Delay and hazards vs. technology: Metal 1

Outline

- 1 Introduction
- 2 Modeling of interconnects
- 3 Impact on testing

4 Summary

Summary and conclusion

- 1. For high losses: interconnects can be modeled using rc-elements with capacitive coupling to the nearest neighbouring lines.
- 2. For low and medium losses: interconnects have to be modeled using distributed models including inductances.

Summary and conclusion (cont.)

- 3. There is a strong pattern dependancy concerning the occurrence of line delays and hazards.
- \Rightarrow For the test pattern generation one has to take into account effects on interconnects.